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Abstract

The paper proposes a multi-dimensional, phonologically-aware numeric encoding of 
Turkish for use with neural networks. The system is evaluated and compared to PatPho 
(Li/MacWhinney 2002) in a test in which the network computes the shape of the past 
tense suffix.

0.  Introduction

A number of attempts have been made to convert phonemes to numbers in a way that 
adequately renders the distances between them. See Li and MacWhinney (2002: 408f) 
for an overview. In the same paper, a new encoding is proposed, but it is not tested. 
At least for Turkish, it would seem, its effectiveness is limited.

The present paper proposes a different system (section 1.) and evaluates it using 
the Turkish past tense suffix, achieving a considerably higher accuracy (section 2.). 
Moreover, the proposed encoding is easier to port to different languages beacuse 
the method for chosing the specific numeric values is less arbitrary and, even more 
importantly, it is overt. Finally, the preliminary results of an actual application of 
the encoding are presented (section 3.).

Turkish is particularly well suited for testing an encoding of this kind for two 
reasons. Firstly, its phonology is relatively simple and symmetric, and so it serves 
well as a model which can be viewed as a minimal example, appropriate for an initial 
presentation. Secondly, Turkish has vowel harmony and consonant assimilations 
on morpheme boundaries, both of which are regular and entirely dependent on 
phonetics alone.
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All the examples are presented phonologically in the Finno-Ugric transcription; see 
Stachowski K. (2011) for details. Unless specified otherwise, Turkish verbs are tradition-
ally given in the infinitive, i.e. with the -maek suffix attached and separated with a dot.

1.  Encoding

The system is inspired by PatPho, which was proposed in Li and MacWhinney (2002), 
but it departs considerably from the original. It, too, is based on three features 
(three dimensions). The meaning of one of the dimensions has been retained (Li/Mac- 
Whinney’s ‘D2’ = my X axis) but the values on it have been rearranged to better 
reflect the human anatomy. The other two axes have been assigned linguistically 
more relevant meanings.

In this article, only an encoding for modern literary Turkish will be discussed. 
Vowel length, however, will be omitted because it has no impact on the shape of any 
of the Turkish suffixes and, therefore, is very difficult to test.

The system starts with a two-dimensional cross-section of the mouth. The X axis 
represents the place of articulation, and the Y axis the height of the channel between 
the tongue and the palate.

To accommodate for such features as voicedness or nasality, a third dimension 
has been added which represents the number of organs taking part in the articu-
lation. Thus, voiceless consonants are at Z=1, voiced consonants and unrounded 
vowels at Z=2 (+ vocal cords), and nasal consonants, /l/, and rounded vowels at Z=3 
(+ vocal cords + nasal cavity / sides of the tongue / lips).

Here, the scale is phonologically discrete rather than phonetically continuous, 
which appears to be a much more practical solution for any objectives that are not 
strictly phonetic. Represented are not sounds or even allophones, but phonemes.

Each step in all the dimensions has the value of 1.

Certain simplifications and assumptions have been made.
Bilabial and labiodental consonants are grouped together as ‘labials’; by the same 

token, velars and glottals are all categorized as ‘guttural’. These measures have been 
introduced in order to exclude near-empty categories (there are only two labiodental 
and one glottal consonant in Turkish).

Nasal consonants are classified as stops with an additional place of articulation, 
rather than as a separate manner of articulation as in PatPho. The pairs k : ḱ, g : ǵ 
and l :  are considered allophonic. Their phonemic status is perhaps debatable in 
Turkish as a whole, but in the limited fragment tested here (170 verb stems, see 2.), 
they can be safely treated as allophones. Note that this approach is actually more 
demanding for the encoding as it provides the network with fewer clues about the 
harmonies of the tested stems.

Using the above system, Turkish phonemes can be visualized three-dimensionally 
as in fig. 1. or, perhaps more practically, in a flattened two-dimensional table as in 
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tab. 1. For example, /p/ is represented as an ordered triple (1, 1, 1) = (labial, stop, 
voiceless), /b/ as (1, 1, 2), /f/ as (1, 3, 1) etc.

Some insight into the relations between the phonemes in this encoding can also 
be obtained from the dendrogram in fig. 2. Note, however, that a two-dimensional 
representation inevitably distorts the three-dimensional space to a certain degree.

Many network architectures, including the perceptron used here, require the 
input data to be of a fixed length. This creates slots which have to be assigned 
a value even though from the linguistic point of view they are empty (e.g when 
shorter words are mixed with longer ones in the analyzed corpus, and need to be 
artificially lengthened). In the test, they were completed with dashes, which were 
subsequently converted to the triple (-5, -5, -5). The results suggest that this system 
is ‘understandable’ for the network. (See 2.2.)

Figure 1.  A three-dimensional representation of Turkish phonemes. See also tab. 1.

Feature Labial Alveolar Post-
alveolar Palatal Guttural Value

Stop p b m t d n k g – 1

Affricate č ǯ – 2

Fricative f v – s z – š ž – h – – 3

Liquid – r l – j – 4

High 
vowel – i ü – y u 5

Low 
vowel – e ö – a o 6

1 2 3 4 5 Value

Table 1.  A flattened visualization of a three-dimensional representation of Turkish 
phonemes (fig. 1.). The first phoneme in each cell is at Z=1, the second at Z=2, and 
the third at Z=3. See also the resulting dendrogram in fig. 2.
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Figure 2.  A dendrogram of the proposed encoding as in fig. 1. Note that a certain amount 
of bias is inevitable when a three-dimensional space is flattened to a two-dimensional 
picture.

The network outputs three numbers representing a point in a three-dimensional 
space, which is then interpreted as the nearest phoneme. The Canberra, Euclidean, 
Manhattan and maximum distances were tested; the average accuracies in the past 
tense suffix test (see 2.) were very similar for all four. The best results were identical: 
1.0 for the training corpus and 0.976 for the test corpus. See tab. 2.

Distance Training Test Total

Canberra 0.969013 0.771613 1.740627

Euclidean 0.969687 0.778893 1.748580

Manhattan 0.969687 0.778580 1.748267

Max. dist. 0.969687 0.768087 1.737773

Table 2.  Average accuracies of the network in the past tense suffix test (see 2.) with differ-
ent distance functions. The best results were identical for all four: 1.0 for the training 
corpus and 0.976 for the test corpus.

PatPho and the encoding proposed here differ in almost all the details but are 
nonetheless typologically similar in that they both exploit the existing linguistic 
knowledge in order to create a new computer model of a fragment of language.

Also the opposite approach has been attempted, perhaps even with more 
vigour. Computational methods have been employed to rediscover phonology in 
an unsupervised fashion, based solely on distribution analysis. To only name two, 
Rodd 1997 used recurrent neural networks and a phonologically blind encoding 
for Turkish, and obtained promising results, in particular in vowel harmony; Cal-
derone 2009 used independent component analysis of phoneme collocationality 
to automatically identify phonological categories in English, Italian and Finnish. 
Both these studies, and others like them, are intriguing and appear to have the 
potential to serve as base for future encodings, with the added virtue of (at least 
greater) objectivity.
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2.  Test

To assay the effectiveness of the encoding, a test based on the Turkish past tense 
suffix was prepared. Its dictionary form is traditionally -dy, which is understood 
as any of the eight combinations of d ~ t + y ~ i ~ u ~ ü. D is chosen iff the final 
phoneme of the stem is voiced. Y and u are chosen iff the last vowel in the stem is 
back, and u and ü iff it is labial. Examples: al.dy ‘(s)he took’, et.ti ‘(s)he did’, vur.du 
‘(s)he hit’, gör.dü ‘(s)he saw’.

A hundred and seventy Turkish monosyllabic verb roots were collected, sorted 
alphabetically and the even roots used as the training corpus while the odd ones as 
the test corpus, in three different versions; see 2.2.

The test was run on a multi-layer perceptron as implemented in the neuralnet 
package for R (Fritsch/Günther 2012, see also Günther/Fritsch 2010). It was trained 
with the resilient backpropagation algorithm without backtracking (rprop-). For the 
tests with the encoding based on PatPho, the error threshold was set at 0.005; for 
the encoding proposed in this article, it was set at 0.1. The random seed was always 
set at 1. For all the other settings, the default values were kept.

2.1.  PatPho
Unfortunately, Li and MacWhinney (2002) only give an encoding for English and 
do not explain in detail how they reached the exact numeric values for the different 
phonological features. The general idea appears to be sufficiently clear, however, and 
I tried to follow it as closely as possible when porting their system to Turkish.

The modifications are few and minor. For consonants, the only change was the 
removal of the dental feature from D2, because it is not represented in Turkish.

As for vowels, Turkish phonology is based entirely on three binary oppositions: 
frontness, roundness and height; see e.g. Pilancı, Demir and Yılmaz (2011: 24f). To re-
flect this, the features central and mid were removed from D2 and D3, respectively, and 
the features mid-high and mid-low in D3 replaced with labial high and labial low.

The numeric values were all preserved. See tab. 3. and the resulting dendrogram 
in fig. 3. The empty slots (see 1.) were represented by the triple (-1, -1, -1).

D1 D2 D3

vowel 0.100 front 0.100 high 0.100

labial high 0.185

back 0.250

labial low 0.355

bilabial 0.450 low 0.444

labio-dental 0.528

alveolar 0.684 nasal 0.644
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D1 D2 D3

voiced 0.750 post-alveolar 0.762 stop 0.733

palatal 0.841 fricative 0.822

velar 0.921 approximant 0.911

voiceless 1.000 glottal 1.000 lateral 1.000

Table 3.  A port of Li and MacWhinney’s encoding to Turkish. See also the resulting den-
drogram in fig. 3.

Figure 3.  A dendrogram of an encoding for Turkish (tab. 3), based on Li and MacWhinney’s 
(2002) proposition for English. Note that a certain amount of bias is inevitable when 
a three-dimensional space is flattened to a two-dimensional picture.

2.2.  Comparison
As mentioned above, two encodings were tested on three versions of two corpora 
of 85 unique Turkish monosyllabic verb stems each. All words were two to four 
phonemes long.

In the first version, no specific template was used. Words of fewer than four 
phonemes were completed with dashes, represented by (-1, -1, -1) in the encoding 
based on PatPho and by (-5, -5, -5) in the one proposed in this article.

The second version (‘CV-1’) used a CVCC template filled from the left, i.e. with 
stems which only have one consonant in the auslaut never occupying the rightmost 
slot (e.g. -al- ‘to take’ or bak- ‘to look’). The voicedness of the anlaut of the suffix 
is determined by the last phoneme of the stem. Voiceless consonants can co-occur 
with sonorants in Turkish, e.g. in art.mak ‘to increase’. As a result, the choice be-
tween d- and t- in the suffix must be based on slot 4 if it is filled (e.g. -art), and on 
slot 3 if it is not (e.g. bak-).

The third version (‘CV-2’) used the same CVCC template, but filled from the right, 
i.e. with stems with a consonant in the auslaut always occupying the rightmost slot 
(e.g. -a-l ‘to take’ or ba-k ‘to look’). With this method, the voicedness of the anlaut 
of the suffix can always be deduced from slot 4.
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The test was run on networks with one to hundred hidden neurons. (See 2. above 
for detailed settings.) The results are presented in fig. 4. and tab. 4. Note that both 
encodings are typologically similar and their results can be directly compared 
without additional reservations.
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Figure 4.  A comparison of the accuracy of neural networks in the Turkish past tense suf-
fix test with an encoding based on PatPho (see 2.1.) and that presented in this article 
(see 1.). The plots are divided by corpora (rows) and templates used (columns). See tab. 4. 
for the exact numbers.

Corpus/Result PatPho Stachowski K.

Av
er

ag
e

Training 0.456 0.970

Test 0.258 0.779

Test, none 0.249 0.741

Test, CV-1 0.263 0.791

Test, CV-2 0.263 0.805

Overall 0.357 0.874

Be
st

Training 0.541 1.000

Test, none 0.388 0.941

Test, CV-1 0.365 0.976

Test, CV-2 0.376 0.976

Table 4.  Accuracy of neural networks in the Turkish past tense suffix test with an en-
coding based on PatPho (see 2.1.) and that presented in this article (see 1.). See fig. 4. 
for an overview.
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In total, the networks answered 51,000 questions for each encoding (85 words × 
2 corpora × 3 templates × 100 different numbers of hidden neurons).

In 52% of the cases (54% in the test corpus), the Turkish port of PatPho returned 
a triple which in a three-dimensional space lay exactly between two phonemes. 
These answers were considered to be incorrect because it is hardly fair to expect 
the examiner to choose a single correct answer out of the many alternatives pro-
vided by the examinee. The best ‘cheated’ result on the test corpus would be 0.706 
(53 neurons, CV-1).

With the encoding proposed in this article, this situation did not occur.

The best total result of 1.976 was achieved with four different settings: template 
CV-1 + 12/20/22 neurons, and template CV-2 + 8 neurons. In every case, the ac-
curacy in the training corpus was 1.0, and 0.976 in the test corpus. The errors are 
shown in tab. 5.

Verb CV-1, 
12 neurons

CV-1, 
20 neurons

CV-1, 
22 neurons

CV-2, 
8 neurons

čent.ti dl ty + du

jont.tu dü ty + du

art.ty + + ǯo +

sars.ty + + du +

Table 5.  Errors of the four most accurate networks. Verbs are given with the past tense 
suffix (i.e. the correct answer) instead of in the infinitive.

The reasons for these errors are not obvious. Čent.mek and jont.mak are the only roots 
ending in -nt in either corpus, and sars.mak is the only one in -rs. As for art.mak, 
there are two more roots ending in -rt in the test corpus (jyrt.mak and sürt.mek) 
and three in the training corpus (dürt.mek, ört.mek and tart.mak). Generally, roots 
ending in a sonorant + voiceless consonant are relatively frequent in both corpora 
(10 in the training corpus and 9 in the test corpus), while the cluster sonorant + 
voiced consonant is not represented at all in the auslaut.

It should be also noted that six out of the eight errors are of a kind that begin-
ners in Turkish very often make, too. Only dl and ǯo are completely incoherent.

3.  Postscript

-C-type anlaut reduplication is a no longer productive method of intensification 
in the Turkic languages, whereby the initial (consonant and) vowel of the word 
is reduplicated and prepended to the base with a fixed ‘closing consonant’ in 
between, e.g. ješil ‘green’ → je.m.ješil ‘completely green’, kara ‘black’ → ka.p.kara 
‘pitch-black’.
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In Turkish, the closing consonant can be one of m, p, r and s. The rules governing 
the choice are not known. Surely, they are not purely synchronic and phonetic, but 
this is nevertheless the approach that has dominated the research so far.

In particular, H.-G. Müller (2004) proposed a set of five (synchronic and pho-
netic) rules and in order to test them, asked 125 Turkish students to reduplicate three 
corpora: A with 100 words which do actually have reduplications in Turkish, B with 
94 words which do not and C with 24 nonsense words (p. 251f). Next, he compared 
the results with his predictions – which, notabene, go against his own rules in about 
a third of the examples; see Stachowski K. [forthcoming].

A neural network was trained on the corpus Müller used to formulate his rules 
(a superset of his corpus A), and tested on his corpora B and C. With the random 
seed set at 1, the best coincidence with his predictions was achieved by networks con-
taining 15, 22 and 35 hidden neurons. For each of these numbers, 125 networks were 
created, and on each occasion the seed was chosen randomly from a range of one 
to one million. The preliminary average results are given in tab. 6.

Corpus Müller 
2004

ANN, 
15 neurons

ANN, 
22 neurons

ANN, 
6 neurons

A/Training 84.2% 76.43% 81.80% 65.86%

B 57.7% 54.21% 52.74% 57.56%

C 36.1% 32.46% 32.30% 35.00%

Table 6.  A preliminary comparison of the average performance of different neural net-
works with the encoding proposed in this article, and the students interviewed by 
Müller (2004).

Taking into consideration that randomness is responsible for a significant part of the 
results in tab. 6., they still appear to be conspicuously similar. In itself, this is, 
of course, not a proof of the general feasibility of the encoding proposed in this article. 
I believe that it nevertheless does suggest the potential of this line of research.
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